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Dispersion Characteristics of Microstrip Lines

HAIM CORY, MEMBER, IEEE

Absttnct-A coupled-fineanalysfs is used fo conJmctConwith Carffn’s
model fnorder to ffndthe frequency dependence of the~on
mnstsntandofthe cb@erMfc impdana of dispemive microstrip ffoes.
~~timmtib~ kikntidtitihtti-~

the Charaderlstfc fmpedance of the coupled ffnes de4xeam with frequeney.

I. INTRODUCTION

T HERE HAVE been numerous quasi-static analyses

of microstrip lines, but only in the last decade has

attention been given to the dispersive behavior of these

lines at higher frequencies [ 1]– [ 11]. In this paper, a cou-

pled-line analysis [1] is used in conjunction with Carlin’s

model [6] in order to obtain the frequency dependence of

the propagation constant and of the characteristic imped-

ance of dispersive microstrip lines. The frequency varia-

tion of the propagation constant is well established while

that of the characteristic impedance which has been re-

viewed by Bianco et al. [9], is related to its definition.

According to some authors, the characteristic impedance

increases with frequency [2], [3], [7], [8] while according to

others, it decreases with frequency [1], [10]. In our coupled-

Iine analysis, the characteristic impedance of the lines

defined in accor&nce with a propagation constant whose

value has been experimentally verified, is found to de-

crease with frequency.

II. THE CARLIN MODEL

A coupled-line model for dispersion in microstrips has

been proposed by Carlin [6]. This model is based on the

circuit properties of coupled dispersive transmission lines

as given by Noble and Carlin [13]. Let the infinitely long

uniform microstrip extend in the z-direction. The equa-

tions for the pair of coupled lines representing it, become,

for real frequencies ti

where

[1-–‘1v— v~

and

-[1i,i=
i2
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Fig. 1. Coupled-line model per unit length for microstrip.

are the voltage and current vectors on the pair of coupled

lines, while ~ and ~ are the series impedance per unit

length and the shunt admittance per unit length two-by-

two matrices for the pair of coupled lines. ?? and ~ are

given by [6]

where co, PO, and q. are the permittivity, permeability,

and impedance of free space, Ceo and Z. are the effective

static relative dielectric constant and the air-filled static

rnicrostrip line characteristic impedance, respectively, K is

the cutoff wavenumber for the uncoupled TE mode (see

belqw), and the coupling capacitance Clz =kceo (where

0< k <1 is the capacitive coefficient of coupling). None of

these quantities is frequency-dependent so that all of the

above matrix elements are linearly dependent on the

frequency, except Yz. It is to be noted that C.. = (Z. /Z~)2

where Zd is the dielectric-filled static microstrip line char-

acteristic impedance. The coupled-line model for the rni-

crostrip is shown in=Fig. 1.=We have normalized Carlin’s

expressions for the Z and Y matrices for reasons which

will appear in the next section.

When uncoupled, the upper line propagates a TEM

mode while the lower one propagates a TE mode. When
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coupled, the circuit represents a pair of modes which are

the two lowest order hybrid modes that propagate on the

[1
.

microstrip line. The eigenvalues Y:, b of the ~ ~ matrix

are given by

2_
Ya, b

-v

– –dcopo~e~ + : + ~2@44P%eo +

where the minus sign in front of the square root relates to

the mode which propagates down to dc a, i.e., the quasi-

TEM mode. The plus sign relates to the next mode b, i.e.,

the quasi-TE lo mode.

III. THE COUPLED LINE ANALYSIS

Tripathi [12] has analyzed asymmetric coupled trans-

mission lines in an inhomogeneous medium. The behavior

of the two infinitely long coupled lines, which extend in

the z-direction, is described by the following set of equa-

tions:

[]

u~

d V2 =_

Z il

i2

where Ui and ii are

1[1
ooz~zmu,

o 0 Zm Z2 02

Y1 Y~ O 0 il

Ym Y2 O 0 i2

the voltage and current on line i

(i= 1,2); while Zj and ~ (j= 1, 2) are the self impedance

and admittance, respectively, per unit length of line j in

the presence of line k (k= 1,2; k#j); Zm and % are the

mutual impedance and admittance, respectively, per unit

length of the coupled lines. None of the Z or Y coeffi-

cients vary with z, so that a z-variation of the form e ‘Z

could be assumed for the voltages and currents, resulting

in a fourth-order characteristic equation whose roots (the

matrix eigenvalues) are given by 3 ya and k yb, where [12]

Y*ZI + Y2Z2
Y:, b =

2
+Ymzm T +

J Y,Z1 –y2z2)2+4(z1ym+ y2zm)(z2ym + YIZm) .

The above expression is identical to that given in [6], if

we take Z, =Zll, Z~ =Z12, Zz =%, Y1 = Yll, Ym = Y127

and Y2 = Y22. We should note that Z1 = Z2 ~d Z~ = 0.

The microstrip could therefore be analyzed according to
[12].

Following Tripathi’s analysis, we assume then that the

general solution for the voltages and currents on the two

coupled lines (1 and 2) are given in terms of the four

[H
v, 1

V2 Ra
=A, y

il

i2 Ra;a2

waves by

[]

1

e –7.2 +/q _ ; ~ + 7’+

– Ra;a2

1

+Al~~b~e-yz+A~ ~
Rb

, ‘Ybz

– Yb,

–RbYb2

where

R .qY2-Y*.&yF-q
“’b 2Ym

are real quantities, and where the coupled lines 1

characteristic admittances for modes a and b are

respectively, by

ya~,b~= ~

Y _ bb,
a2,b2 Z2

and 2

given,

It follows that Y.l = Y.2 ~ Y. and Y~l = Y“z ~ Y~ since

Z,= Z2. The quantities in the square brackets multiplying

the exponential terms are the four eigenvectors corre-

sponding to the four eigenvalues T y., b.

The accuracy of the fundamental mode eigenvalue y=
has been experimentally verified [6]. The corresponding

coupled lines (1 or 2) characteristic impedance is given by

where c= is the effective frequency-dependent relative di-

electric constant related to the propagation constant Y=

through y= =jti *. The normalization of Carlin’s

matrices ~ and Y leaves the y‘s and the R‘s unmodified

but ensures that when u tends to zero, Z. tends to Z~.

When a tends to zero, R= tends to u2eopoC12 /K2, i.e., it is

real, positive, and tends to zero, too.

The coupled lines (1 or 2) characteristic impedance of

the b modes is given similarly by

z = j~poZO/qo
b

Yb ‘

It is a purely imaginary quantity when the b-mode is

under cutoff. When @ tends to zero, Rb tends to

– K2/Q2COpoC12, i.e., it is real negative, and tends to

minus infinity.

Y. and yb are the eigenvalues of the coupled lines

characteristic admittance matrix given by [14]

1

(

RaYb –RbYa Ya – Yb

= Ra– Rb Y* – Yb )RaYa ‘Rbyb .

IV. DISCUSSION AND CONCLUSIONS

We have shown that as long as Carlin’s model gives

valid results for the fundamental mode propagation con-

stant, the dispersive microstrip line could be appropriately
represented by “equivalent” coupled transmission lines

having propagation constants and characteristic imped-

ances as given above. If the b-mode is strongly attenuated

under cutoff (which are the usual working conditions) or

suppressed above cutoff (which seems difficult to achieve),

the a-mode only will propagate on lines 1 and 2 and the

dispersive microstrip line representation would be as

shown in Fig. 2(a). We know that 02 /ul = i2 /il = R.. we
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Fig. 2. (a) Dispersive microstrip fine representation by two transmis-
sion lines. (b) Equivalent circuit consisting of one transmission line.

have omitted for convenience the suffix a from o and i. It

follows that the impedances ({ ~ tr/i) at the same point
(z) on the two lines (1 and 2) are equal, i.e., {,(z) =(,(z).

At the output (z= 1), it is required that ~1(l)={2(l)={OU,

and at the input (z = O) it is required that {1(0) = {2(0) =~h.

The power on line 1 is 1/2 Re oli~ while the power on line

2 is 1/2 Re vli~lt~, i.e., the total power in the circuit is

1/2 Re ulif(l + R:). In order to comply with these con-

straints we take at the output the ratios of the voltages

(and of the currents) as follows: Ul(l) : 02(1) : Uout

=l:Ro:~l+R; . Identical ratios are taken for the volt-

ages (and for the currents) at the input. The relation

between {h and rOU,is given by

The above circuit could be replaced by an equivalent

circuit (as shown in Fig. 2(b)) consisting of a single

transmission line with characteristic parameters y. and Za,

voltage (o~) and current (if) such that 1/2 Re v~i~* =

l/2 Reu1i~(l +R~) and {~ = {ti. Since it is well estab-

lished [1]–[11] that e. increases with frequency, our analy-

sis shows that the characteristic impedance Za decreases

with frequency, a fact which has been confirmed experi-

mentally by Napoli and Hughes [15]. Denlinger [1],

Bianco et al. [16], and Getsinger [10], arrived at similar

expressions for Z. by different approaches. It is to be

stressed that this analysis is possible only because 21 =22.

Finally, when u tends to zero, R: CK1, and all the power is

concentrated in the a mode in line 1 only, o< = ol, i; = il,

and 2== Zd.
The 4x 4 equivalent Z-matrix of a segment of line .of

length 1 coqld be found by inserting the adequate values
given above for y., @ 2=, b?Ra, ~ in the appropriate expres-

sion given by Tripathi [12]. A similar matrix has been

found by Bianco et al. [17]. If the b-mode is well under
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cutoff this 4x 4 matrix reduces to a 2X 2 matrix linking

the voltage and current at the two ends of line 1, as for an

ordinary transmission line having characteristic parame-

ters Ya and Za, thus

[1[l)i~Zocothyal

1[ 1

Zacosechyal iin

Uou, = Z.cosech yJ Zacothyal —iOut “

There is no voltage and current at either end of line 2 in

this case.

In conclusion it seems that the concept of characteristic

impedance is useful mainly at the frequencies where the

b-mode is well under cutoff, or if the b-mode is sup-

pressed, In this case the dispersive microstrip line could be

represented by an equivalent transmission line having a

frequency dependent propagation constant y. and a

frequency dependent characteristic impedance 2= which

decreases with frequency.
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