IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-29, NO. 1, JANUARY 1981 ‘ 59

Dispersion Characteristics of Microstrip Lines

HAIM CORY, MEMBER, IEEE

Abstract—A coupled-line analysis is used in conjunction with Carlin’s
model in order to find the frequency dependence of the propagation
constant and of the characteristic impedance of dispersive microstrip lines.
The propagation constant thus obtained is identical with that of Carlin and
the characteristic impedance of the coupled lines decreases with frequency.

I. INTRODUCTION

HERE HAVE been numerous quasi-static analyses
T of microstrip lines, but only in the last decade has
attention been given to the dispersive behavior of these
lines at higher frequencies [1]-[11]. In this paper, a cou-
pled-line analysis [1] is used in conjunction with Carlin’s
model [6] in order to obtain the frequency dependence of
the propagation constant and of the characteristic imped-
ance of dispersive microstrip lines. The frequency varia-
tion of the propagation constant is well established while
that of the characteristic impedance which has been re-
viewed by Bianco et al. [9), is related to its definition.
According to some authors, the characteristic impedance
increases with frequency [2], [3], [7], [8] while according to
others, it decreases with frequency [1], [10]. In our coupled-
line analysis, the characteristic impedance of the lines
defined in accordance with a propagation constant whose
value has been experimentally verified, is found to de-
crease with frequency.

II. THE CARLIN MoODEL

A coupled-line model for dispersion in microstrips has
been proposed by Carlin [6]. This model is based on the
circuit properties of coupled dispersive transmission lines
as given by Noble and Carlin [13). Let the infinitely long
uniform microstrip extend in the z-direction. The equa-
tions for the pair of coupled lines representing it, become,
for real frequencies w
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Fig. 1. Coupled-line model per unit length for microstrip.

are the Volta_g_e and current vectors on the pair of coupled
lines, while Z and Y are the series impedance per unit
length and the shunt admittance per unit length two-by-
two matrices for the pair of coupled lines. Z and ¥ are
given by [6]
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where ¢,, g, and 7, are the permittivity, permeability,
and impedance of free space, €, and Z; are the effective
static relative dielectric constant and the air-filled static
microstrip line characteristic impedance, respectively, X is
the cutoff wavenumber for the uncoupled TE mode (see
below), and the coupling capacitance C;, =ke,, (Where
0< k< 1 is the capacitive coefficient of coupling). None of
these quantities is frequency-dependent so that all of the
above matrix elements are linearly dependent on the
frequency, except Y5,. It is to be noted that €, =(Z,/Z,)*
where Z, is the dielectric-filled static microstrip line char-
acteristic impedance. The coupled-line model for the mi-
crostrip is shown in_Fig. 1. We have normalized Carlin’s
expressions for the Z and Y matrices for reasons which
will appear in the next section.

When uncoupled, the upper line propagates a TEM
mode while the lower one propagates a TE mode. When
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coupled, the circuit represents a pair of modes which are
the two lowest order hybrid modes that propagate on the

microstrip line. The eigenvalues y2 , of the [% g] matrix
are given by

2 2 Kz— 2,4.2,.,2.2 K4
Ya =~ Weokot o T 5 F\ [k Wegno ot 4

where the minus sign in front of the square root relates to
the mode which propagates down to dc a, i.e., the quasi-
TEM mode. The plus sign relates to the next mode b, i.e.,
the quasi-TE,; mode.

I1I1. THE COUPLED LINE ANALYSIS

Tripathi [12] has analyzed asymmetric coupled trans-
mission lines in an inhomogeneous medium. The behavior
of the two infinitely long coupled lines, which extend in
the z-direction, is described by the following set of equa-
tions:
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where v; and i; are the voltage and current on line i
(i=1,2), while Z; and ¥; (j=1,2) are the self impedance
and admittance, respectively, per unit length of line j in
the presence of line k (k=1,2; k#j); Z,, and Y,, are the
mutual impedance and admittance, respectively, per unit
length of the coupled lines. None of the Z or Y coeffi-
cients vary with z, so that a z-variation of the form e
could be assumed for the voltages and currents, resulting
in a fourth-order characteristic equation whose roots (the
matrix eigenvalues) are given by *vy, and *v,, where [12]
WZ,+Y,Z, 1
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The above expression is identical to that given in [6], if
we take Z,=Z,,, Z,,=Zyy, Z,=2Z5, ,=Y,, ¥, =Y},
and Y, =Y,,. We should note that Z,=Z, and Z, =0.
The microstrip could therefore be analyzed according to
[12].

Following Tripathi’s analysis, we assume then that the
general solution for the voltages and currents on the two
coupled lines (1 and 2) are given in terms of the four
waves by
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are real quantities, and where the coupled lines 1 and 2
characteristic admittances for modes a and b are given,
respectively, by
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It follows that Y,,=Y,, 2 Y, and Y, =Y,, = Y, since
Z,=Z,. The quantities in the square brackets multiplying
the exponential terms are the four eigenvectors corre-
sponding to the four eigenvalues *v, ,.

The accuracy of the fundamental mode eigenvalue v,
has been experimentally verified [6]. The corresponding
coupled lines (1 or 2) characteristic impedance is given by
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where ¢, is the effective frequency-dependent relative di-
electric constant related to the propagation constant vy,
through y, =jwVpeeee, . The normalization of Carlin’s

matrices Z and Y leaves the y’s and the R’s unmodified
but ensures that when w tends to zero, Z, tends to Z,.
When w tends to zero, R, tends to w?eopCpp /K2, i€, itis
real, positive, and tends to zero, too.

The coupled lines (1 or 2) characteristic impedance of
the b modes is given similarly by
_JoroZo/Mo

Y )

It is a purely imaginary quantity when the b-mode is
under cutoff. When  tends to zero, R, tends to
~K?/wouoCyys i€, it is real negative, and tends to
minus infinity.

Y, and Y, are the eigenvalues of the coupled lines
characteristic admittance matrix given by [14]
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1V. DiscussioN AND CONCLUSIONS

We have shown that as long as Carlin’s model gives
valid results for the fundamental mode propagation con-
stant, the dispersive microstrip line could be appropriately
represented by “equivalent” coupled transmission lines
having propagation constants and characteristic imped-
ances as given above. If the b-mode is strongly attenuated
under cutoff (which are the usual working conditions) or
suppressed above cutoff (which seems difficult to achieve),
the a-mode only will propagate on lines 1 and 2 and the
dispersive microstrip line representation would be as
shown in Fig. 2(a). We know that v, /v, =i, /i;=R,. We
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Fig. 2. (a) Dispersive microstrip line representation by two transmis-
sion lines. (b) Equivalent circuit consisting of one transmission line.

have omitted for convenience the suffix a from v and i. It
follows that the impedances ({ =0 /i) at the same point
(z) on the two lines (1 and 2) are equal, i.e., {;(z)={(2).
At the output (z=/), it is required that {,({)={,(1)={u
and at the input (z=0) it is required that {,(0)={,(0)={,,.
The power on line 1 is 1/2Re v,i} while the power on line
2 is 1/2Rev,itR2, i.e., the total power in the circuit is
1/2Re v,i¥(1+R2%). In order to comply with these con-
straints we take at the output the ratios of the voltages
(and of the currents) as follows: ©,(7): vy(!): vy

=1:R,:\1+R?2 . Identical ratios are taken for the volt-

ages (and for the currents) at the input. The relation
between {;, and {,,, is given by
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The above circuit could be replaced by an equivalent
circuit (as shown in Fig. 2(b)) consisting of a single
-transmission line with characteristic parameters vy, and Z,,
voltage (v}) and current (ij) such that 1/2Revji*=
1/2Rev,i¥(1+R2%) and {f, ={,,. Since it is well estab-
lished [1]-[11] that €, increases with frequency, our analy-
sis shows that the characteristic impedance Z, decreases
with frequency, a fact which has been confirmed experi-
mentally by Napoli and Hughes [15]. Denlinger [1],
Bianco et al. [16], and Getsinger [10], arrived at similar
expressions for Z, by different approaches. It is to be
stressed that this analysis is possible only because Z, =Z,.
Finally, when w tends to zero, R2 <1, and all the power is
concentrated in the ¢ mode in line 1 only, v} =v,, i =i,
and Z,=Z,.

The 4x4 equivalent Z-matrix of a segment of line .of
length / could be found by inserting the adequate values
given above for vy, ,, Z, ,, R, , in the appropriate expres-
sion given by Tripathi [12]. A similar matrix has been
found by Bianco et al. [17]. If the b-mode is well under
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cutoff this 4 X4 matrix reduces to a 2X2 matrix linking
the voltage and current at the two ends of line /, as for an
ordinary transmission line having characteristic parame-
ters v, and Z,, thus

Vin | _| Z,cothy,/
Uput N Z, cosechy,l

There is no voltage and current at either end of line 2 in
this case.

In conclusion it seems that the concept of characteristic
impedance is useful mainly at the frequencies where the
b-mode is well under cutoff, or if the b-mode is sup-
pressed. In this case the dispersive microstrip line could be
represented by an equivalent transmission line having a
frequency dependent propagation constant y, and a
frequency dependent charactetistic impedance Z, which
decreases with frequency.
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